
SQL Thru Python

A Python class that connects with SQL Server and uses SQLAlchemy (on top of pyodbc) and Pandas
to streamline SQL operations thru Python ... Thom Ives and Ghaith Sankari

All of the code explained in this PDF is available from Thom's SQL_Thru_Python repository on
DagsHub.

Overview

Please consider this as a starter class for your own SQL thru Python operations. Take it and make it
better for your specific needs. Most of the methods in this class are literally convenience methods.
Why do we say this? Because truly, all other methods and more could be accomplished using the last
method general_sql_comm . In fact, when we bury our SQL routines in Python classes for reuse, we
create many more convenience routines and procedures to format our data coming from, and going
into, SQL tables in various databases. So, again, consider this a set of starter methods for a class you
will customize for your own applications.

The skilled SQL programmer might ask, "Why not just make a set of Stored SQL Procedures? We
couldn't agree more! We are simply doing this on the Python side. Why? To make it part of our Python
automations, which include other Python automations for our applications.

Imports

First, we import pandas, sqlalchemy, and, we find this next part essential, import URL from
 sqlalchemy.engine . We'll explain why soon.

Next, we view the class definition with only the method names shown.

import pandas as pd

import sqlalchemy

from sqlalchemy.engine import URL

class DB_Table_Ops:

> def __init__(self,

> def table_exists(self, table_name):

> def create_table(self, schema_str):

> def drop_table(self, table_name):

> def insert_df_to_table(self, df, table_name):

> def query_to_df(self, sql_comm):

> def general_sql_comm(self, sql_comm):

The init Method

The __init__ method has default values for: 1) driver, 2) server, 3) database, 4) user, and 5)
password.

You can of course pass in values other than the default. Only use this type of code in your safely
protected backend shared with other trusted developers.

Using the parameters of the __init__ method, we then build up a connection_string. The
connection_string is input to the URL.create method along with other parameters that are needed as
described in SQL Alchemy documentation. The URL.create method was found to be the least
cumbersome way to create a reliable url connection string that would work.

The connection_url is generated and passed as an input to sqlalchemy.create_engine , which
returns connection engine information that is assigned to the class's self.engine attribute.

 def __init__(self,

 driver='{ODBC Driver 17 for SQL Server}',

 server='your server name',

 database='your database name',

 user='your user name',
 pw='your password'):

 connection_string = f'DRIVER={driver};SERVER={server};'

 connection_string += f'DATABASE={database};'

 connection_string += f'UID={user};PWD={pw}'

 # create sqlalchemy engine connection URL

 connection_url = URL.create(

 "mssql+pyodbc",

 query={"odbc_connect": connection_string})

 self.engine = sqlalchemy.create_engine(connection_url)

The table_exists Method

The table_exists method simply checks to see if the provided table name exists in our database. The
fixed query string (qs) shown will return a list of all table names in our database. If it finds an instance
of the table name, it returns True . If not, it returns False .

 def table_exists(self, table_name):

 qs = '''select schema_name(t.schema_id) as the_schema_names,

 t.name as the_table_names

 from sys.tables t

 order by the_schema_names,

 the_table_names;'''

 with self.engine.connect() as conn:

 cursor = conn.execute(sqlalchemy.text(qs))

 table_exists = [t for t in cursor if table_name == t[1]]

 return bool(table_exists)

If you were to run the query string, qs, in SQL Server Management Studio or Azure Data Studio,
you'd see a list of existing tables. For operations we will soon run, you'd see the following.

In case you are not familiar with context managers, consider the following

 with self.engine.connect() as conn:

The Python with statement is followed by a Python command and is assigned an alias using as .
The alias of conn is then used below the context manager in the indented lines of code.

Context managers are great for helping us write clean and concise code. They are implemented using
the with statement. When the block of code indented under a with statement is done, the connection
is closed. We encourage you to study context managers when you can. You can even write your own.
You will see the above context manager in most of the other methods of this class.

The list comprehension

 table_exists = [t for t in cursor if table_name == t[1]]

will be empty if table_name is not found, and will have only one element if table_name is found.
Finally, the list is type cast as a boolean. If the list is empty, it will return False . If table_name was
found among the table names, it will return True .

The create_table Method

The create_table method simply takes a schema string as the only input. We extract the table name
from this string. Then we call the table_exists method. If the table already exists, we simply return
to the calling code. If the table does not yet exist, Then, using our context manager, we connect to the
engine, and we create the table. Once this code is complete, the context manager closes the engine
connection.

 def create_table(self, schema_str):

 table_name = schema_str.split()[2]

 if not self.table_exists(table_name):

 with self.engine.connect() as conn:

 conn.execute(sqlalchemy.text(schema_str))

The drop_table Method

The drop_table method drops a table. If there is no table with table_name , we return to the calling
code. If it does exist, we drop that table within our same context manager.

 def drop_table(self, table_name):

 if self.table_exists(table_name):

 sql_comm = f'''DROP TABLE {table_name}'''

 with self.engine.connect() as conn:

 conn.execute(sqlalchemy.text(sql_comm))

The insert_df Method

The insert_df_to_table method shows us the amazing elegance of SQLAlchemy and Pandas
working together.

 def insert_df_to_table(self, df, table_name):

 if type(df) is dict:

 df = pd.DataFrame(data=df)

 df.to_sql(table_name, self.engine,

 if_exists="append", index=False)

First, note the code

 if type(df) is dict:

 df = pd.DataFrame(data=df)

There may be times that you'd prefer to pass in a python dictionary that is in the same format you'd
receive from df_dictionary = df.to_dict() . Just in case such a dictionary is passed in, we want
to first convert it to a pandas dataframe to exploit the power of SQLAlchemy and Pandas working
together.

The Pandas to_sql method, for dataframe class instances, uses our engine connection and uses its
own context manager. We also pass in table_name , if_exists="append , and index=False . Try
other parameter values to see the differences. We've simply found these parameters to provide the
greatest consistency for adding data to tables and subsequently querying data from tables.

If the table exists, the if_exists="append ensures that new data in the dataframe is appended to
the end of the table. We personally don’t want this Pandas method to use the dataframe’s indices for
the SQL table’s indices. We prefer to let SQL control the indices in accordance with the table schema
during create table .

The query_to_df Method

When we want to query data from a SQL table, we use our query_to_df method.

 def query_to_df(self, sql_comm, index_col="ident", return_dictionary=False):

 with self.engine.connect() as conn:

 df = pd.read_sql_query(sql_comm, conn, index_col=index_col)

 if return_dictionary:

 return df.to_dict()

 else:

 return df

We simply pass in our sql_comm , which would be some specific SQL query, and we also have two
parameters with default values: index_col="ident" , and return_dictionary=False . We prefer to
always name our indentity column in our SQL tables indent , but there may be times that this is not
desirable. Also, there maybe times that we want to return a dictionary of a dataframe instead of a
dataframe.

Our connection conn is opened by the context manager. The Pandas’ read_sql_query method is
called using the sql_comm , the engine connection conn , and our index_col name as a string. This
method returns a dataframe, or a dictionary (depending on the return_dictionary parameter).
Then we return the desired data object to the calling code. The engine connection is closed when
code within the context manager is complete.

The general_sql_comm Method

The last method of our class is general_sql_comm , which receives a SQL command.

 def general_sql_command(self, sql_comm):

 with self.engine.connect() as conn:

 cursor = conn.execute(sqlalchemy.text(sql_comm))

 try:

 return [list(t) for t in cursor]

 except:

 pass

We use a context manager again to control opening and closing the connection. Once connected we
pass in our general SQL command, sql_comm for execution by our database. Consider how many
lines of code were saved by our context manager invoked using
 with self.engine.connect() as conn: . We hope you will fully exploit context management in your
Python code moving forward.

Testing Our Class Methods

Let's now start a separate Python file to import pandas and our DB_Table_Ops from the Python file
containing it. In our case we named it Py_Sql_Alchemy_Class.py and placed it in the same directory.

import pandas as pd

from Py_Sql_Alchemy_Class import DB_Table_Ops

d = {'value_1': [1, 2], 'value_2': [3, 4]}

df = pd.DataFrame(data=d)

schema_str = '''CREATE TABLE table_one (

 ident int IDENTITY(1,1) PRIMARY KEY,

 value_1 int NOT NULL,

 value_2 int NOT NULL);'''

update_cmd = '''UPDATE table_one

 SET value_1 = 7, value_2 = 10

 WHERE ident = 3;'''

dbto = DB_Table_Ops()

dbto.drop_table('table_one')

print(f'table_one exists: {dbto.table_exists("table_one")}')

dbto.create_table(schema_str)

print(f'table_one exists: {dbto.table_exists("table_one")}')

if True:

 dbto.insert_df_to_table(df, 'table_one')

 dbto.insert_df_to_table(df, 'table_one')

 dbto.general_sql_command(update_cmd)

query_string = 'SELECT * FROM table_one'

print('\nData from table one:')

print(dbto.query_to_df(query_string))

print()

dbto.drop_table('table_one')

print(f'table_one exists: {dbto.table_exists("table_one")}')

We do the following operations:

1. Create a simple dictionary
2. Convert the simple dictionary to a dataframe
3. Define a SQL command as a string to create a specific type of table schema
4. Define a SQL command that can perform an update to a table
5. Create an instance of DB_Table_Ops and name it dbto

6. Drop table_one if it exists and report the state of it
7. Create table_one using the predefined schema string and report the state of it
8. Insert our predefined dataframe into table_one twice, and then update it
9. Query the contents of table_one and return the data in a Pandas dataframe

10. Drop table_one and check its existence

The output from this script is ...

table_one exists: False

table_one exists: True

Data from table one:
 value_1 value_2

ident

1 1 3

2 2 4

3 7 10

4 2 4

table_one exists: False

Closing

We encourage you to play with this code. Make changes. Make it more appropriate for your specific
needs. We've refactored this many times ourselves now, but seek to make it still better at least for
yourself. And most of all, enjoy!

Thom Ives and Ghaith Sankari

